Backwards Uniqueness of the Mean Curvature Flow

نویسنده

  • HONG HUANG
چکیده

In this note we prove the backwards uniqueness of the mean curvature flow in codimension one case. More precisely,let Ft, e Ft : M → M n+1 be two complete solutions of the mean curvature flow on M×[0, T ] with bounded second fundamental form in a complete ambient manifold with bounded geometry. Suppose FT = e FT , then Ft = e Ft on M n × [0, T ]. This is an analog of a recent result of Kotschwar on Ricci flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness and Pseudolocality Theorems of the Mean Curvature Flow

Mean curvature flow evolves isometrically immersed base Riemannian manifolds M in the direction of their mean curvature in an ambient manifold M̄ . We consider the classical solutions to the mean curvature flow. If the base manifold M is compact, the short time existence and uniqueness of the mean curvature flow are well-known. For complete noncompact isometrically immersed hypersurfaces M (unif...

متن کامل

Mean curvature flow with obstacles: existence, uniqueness and regularity of solutions

We show short time existence and uniqueness of C solutions to the mean curvature flow with obstacles, when the obstacles are of class C. If the initial interface is a periodic graph we show long time existence of the evolution and convergence to a minimal constrained hypersurface.

متن کامل

Translating Solitons of Mean Curvature Flow of Noncompact Spacelike

In this paper, we study the existence, uniqueness and asymptotic behavior of rotationally symmetric translating solitons of the mean curvature flow in Minkowski space. We also study the asymptotic behavior and the strict convexity of general solitons of such flows.

متن کامل

Mean curvature flow with obstacles

We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we discuss a...

متن کامل

Lagrangians , stable bundles and mean curvature flow

We make a conjecture about mean curvature flow of Lagrangian submanifolds of Calabi-Yau manifolds, expanding on that of [Th]. We give new results about the stability condition, and propose a Jordan-Hölder-type decomposition of (special) Lagrangians. The main results are the uniqueness of special Lagrangians in hamiltonian deformation classes of Lagrangians, under mild conditions, and a proof of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009